THE POINTED SUBOBJECT FUNCTOR, 3× 3 LEMMAS, AND SUBTRACTIVITY OF SPANS Dedicated to Dominique Bourn on the occasion of his sixtieth birthday
نویسنده
چکیده
The notion of a subtractive category recently introduced by the author, is a pointed categorical counterpart of the notion of a subtractive variety of universal algebras in the sense of A. Ursini (recall that a variety is subtractive if its theory contains a constant 0 and a binary term s satisfying s(x, x) = 0 and s(x, 0) = x). Let us call a pointed regular category C normal if every regular epimorphism in C is a normal epimorphism. It is well known that any homological category in the sense of F. Borceux and D. Bourn is both normal and subtractive. We prove that in any subtractive normal category, the upper and lower 3× 3 lemmas hold true, which generalizes a similar result for homological categories due to D. Bourn (note that the middle 3 × 3 lemma holds true if and only if the category is homological). The technique of proof is new: the pointed subobject functor S = Sub(−) : C → Set∗ turns out to have suitable preservation/reflection properties which allow us to reduce the proofs of these two diagram lemmas to the standard diagram-chasing arguments in Set∗ (alternatively, we could use the more advanced embedding theorem for regular categories due to M. Barr). The key property of S, which allows to obtain these diagram lemmas, is the preservation of subtractive spans. Subtractivity of a span provides a weaker version of the rule of subtraction — one of the elementary rules for chasing diagrams in abelian categories, in the sense of S. Mac Lane. A pointed regular category is subtractive if and only if every span in it is subtractive, and moreover, the functor S not only preserves but also reflects subtractive spans. Thus, subtractivity seems to be exactly what we need in order to prove the upper/lower 3 × 3 lemmas in a normal category. Indeed, we show that a normal category is subtractive if and only if these 3 × 3 lemmas hold true in it. Moreover, we show that for any pointed regular category C (not necessarily a normal one), we have: C is subtractive if and only if the lower 3× 3 lemma holds true in C. Introduction Homological categories in the sense of F. Borceux and D. Bourn [2] provide a convenient non-abelian setting for proving homological lemmas such as the 3× 3 lemmas, the short five lemma and the snake lemma (see [4, 2]). The aim of the present paper is to show Partially supported by INTAS (06-1000017-8609) and Georgian National Science Foundation (GNSF/ST06/3-004, GNSF/ST09 730 3-105). Received by the editors 2009-06-01 and, in revised form, 2010-04-19. Published on 2010-04-24 in the Bourn Festschrift. 2000 Mathematics Subject Classification: 18G50, 18C99.
منابع مشابه
Gains from diversification on convex combinations: A majorization and stochastic dominance approach
By incorporating both majorization theory and stochastic dominance theory, this paper presents a general theory and a unifying framework for determining the diversification preferences of risk-averse investors and conditions under which they would unanimously judge a particular asset to be superior. In particular, we develop a theory for comparing the preferences of different convex combination...
متن کاملImproved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant.
BACKGROUND Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram negati...
متن کاملSteady electrodiffusion in hydrogel-colloid composites: macroscale properties from microscale electrokinetics.
A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly d...
متن کاملPerturbative Analysis of Dynamical Localisation
In this paper we extend previous results on convergent perturbative solutions of the Schrödinger equation of a class of periodically timedependent two-level systems. The situation treated here is particularly suited for the investigation of two-level systems exhibiting the phenomenon of (approximate) dynamical localisation. We also present a convergent perturbative expansion for the secular fre...
متن کاملCollinear contextual suppression
The context of a target can modulate behavioral as well as neural responses to that target. For example, target processing can be suppressed by iso-oriented surrounds whereas it can be facilitated by collinear contextual elements. Here, we present experiments in which collinear elements exert strong suppression whereas iso-oriented contextual surrounds yield no contextual modulation--contrary t...
متن کامل